

Advanced Stirling Power Generation System for CHP Application

Temple University, Philadelphia, PA, PI: Dr. Songgang Qiu

Project Team:

Temple: Dr. Songgang Qiu, Dr. Fei Ren, Post-

Doctor, Graduate Students

Parterners: Infinia Technology Corporation, Qnergy, Gas Technology Institute

- High efficiency, low cost CHP system
- Free-piston Stirling Power Generator
- Additively manufactured Stirling engine
- ITC/Qnergy linear alternator/converter
- GTI gas burner

Technology Summary

Efficiency (fuel to electricity) > 38%

Electrical Power (AC) 1 kW

Heating $> 1 \, kW_{thermal}$

System Life > 10 years

Cost < \$3,000

Team of Proven Experts in the Respective Fields

Temple University: Stirling Engine Design, Power Generators, CHP

systems, Materials, System Testing

ITC/Qnergy: Linear Alternator, DFMA, Low Cost Mass

Production, System testing

GTI: Gas Burner

Additive Manufacturer: Additive Manufacturing of the Key Components

Innovation and Uniqueness of the Temple Approach

- Innovative design of integrated pressure vessel, heat exchanger, and regenerator assembly
- Novel implementation of foil regenerator and heat exchangers
- Intelligent adaptation of additive manufacturing to the key components and critical assembly (heater head, regenerator, heat exchangers)
- Efficient and reliable regenerator

Integrated one piece assembly manufactured by additive manufacturing methods

Schedule

Year 1: Complete preliminary design. Additively manufacturing and testing of key components.

Efficiency (heat to work) > 47% Electrical Power (AC) > 1 kW Heating > 1 kW_{thermal}

Year 2: Fabricate and test a Laboratory Demonstration Unit. Temple University Stirling engine integrated with ITC/Qnergy alternator and GTI gas burner.

Year 3: Build and test a Prototype Unit to demonstrate

Efficiency (fuel to electricity efficiency) > 38% Electrical Power (AC) > 1 kW Heating > 1 kW_{thermal}

